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Abstract

We apply total-variation (TV) regularization methods to Abel inversion

tomography. Inversions are performed using the fixed-point iteration method

and the regularization parameter is chosen such that the resulting data fidelity

approximates the known or estimated statistical character of the noisy data.

Five one-dimensional examples illustrate the favorable characteristics of TV

regularized solutions: noise suppression and density discontinuity preservation.

Experimental and simulated examples from X-ray radiography also illustrate

limitations due to a linear projection approximation. TV regularized inversions

are shown to be superior to squared gradient (Tikhonov) regularized inversions

for objects with density discontinuities. We also introduce an adaptive TV

method that utilizes a modified discrete gradient operator acting only apart

from data-determined density discontinuities. This method provides improved

density level preservation relative to the basic TV method.
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1 Introduction

The density reconstruction of objects from several radiographic views is a clas-

sic and important tomography problem. A large subclass of problems is the

interrogation of manufactured items that consist of a small number of different

materials. We present here some results of our investigations on the application

of total variation (TV) regularization to the object reconstruction process. Our

results show that the choice of regularization can have significant impact on the

interpretation of radiographs. This can be especially important in manufactur-

ing, homeland security, and high-energy particle beam applications.

The general inversion is typically formulated using the Radon Transform or

related approaches [3] and is regularized using any one of a number of tech-

niques. For a good introduction to regularization of inverse problems see Vogel

[4]. For objects with cylindrical symmetry, tomographic applications require

only a single viewing angle and the Radon Transform reduces to the Abel

Transform. In this paper we consider objects of one-dimensional description

ρ(r). We leave discussions of applications to objects of general cylindrical sym-

metry ρ(r, z) to a future paper. The continuous Abel transform is

d(x) = 2
∫ ∞

|x|

rρ(r)√
r2 − x2

dr, (1)

where d is a line-integral density relative to ρ. For example, if ρ is a volumetric

density then d is an areal density. Equation (1) has a well-defined inverse:

ρ(r) = − 1
πr

d

dr

∫ ∞

r

xd(x)√
x2 − r2

dx. (2)

A discrete version of Equation (2) is the basis for Abel inversion tomography.

In practice there are a number of difficulties to address. First, Equation (1)

is a simplified description of typically very nonlinear experiments. Second, the
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inverse problem can be ill-posed. Since radiographs are transmission inten-

sity maps (or some equivalent), the corresponding intrinsic material property

is an attenuation coefficient. Thus, obtaining an object density requires an

additional transformation either in the radiographic space (intensity to areal

density) or in the object description (attenuation to density). Both approaches

are nontrivial requiring a detailed understanding of the physics of interaction

between particles in the interrogating beam and the object materials. The sim-

plest case – reconstructing an object made of a single material – can usually

be solved with good accuracy. However, multiple-material situations cause this

additional transformation to be non-unique, and significant prior information

about the object is necessary before the inverse Abel transform can be utilized

for quantitative evaluation.

A third difficulty is the ill-conditioning of the discrete inverse Abel trans-

form. While a given inversion is unique, small perturbations in d lead to large

deviations in ρ. This is because Equation (2) defines an unbounded operator

(see [1] for details). The inversion must be regularized to obtain meaningful

results from noisy data.

The discrete Abel transform can be formulated as a matrix P . If we consider

the object radial density values as a vector ρ of n elements and the areal density

projections as a vector d of m elements, then P is a non-sparse m× n matrix.

This projection is invertible if n ≤ m, but is poorly conditioned when n ∼ m.

Condition numbers increase linearly in n when n � 1. For example, a square

matrix operator of size n× n has condition number ≈ 1.75n.

Inverse Abel transform tomography is formulated as a functional minimiza-

tion problem:

min
ρ

F (ρ) = min
ρ
{||Pρ− d||df + αR(ρ)} , (3)

where || · ||df is an appropriate data fidelity norm, and R(ρ) is a regularization
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term determined by a probability model of the types of objects we expect.

In this paper we focus on the use of regularization to address the important,

but ill-conditioned, inverse Abel Transform tomography problem. We demon-

strate, by example, the importance of the choice of R for recovering object

density profiles ρ from noisy areal density data d. In particular, we show that

the use of total variation (TV) regularization has advantages over Tikhonov

regularization in preserving material property discontinuities in reconstructed

objects.

2 Methods

We compute P as the parallel planar projection from a two-dimensional object

space onto a one-dimensional data space. Noise is treated as stationary Gaus-

sian white noise. In practice this approach works well, but typical experiments

are dominated by signal-dependent Poisson noise. The examples that follow

have different noise characteristics, so our treatment of data fidelity can be

expected to have mixed results. We consider functionals of the form

F (ρ) =
1
2

∫ M

0
dr |Pρ− d|2 + 2πα

∫ M

0
r dr |Dρ|p. (4)

where ρ is supported on [0,M ]. In particular we consider p ∈ {0, 1, 2}, cor-

responding to the following regularization types: none, total variation (TV),

and H1, respectively. The minimizing solution of Equation (3) depends on the

choices of α and p. We select the α that leads to a solution with data fidelity

norm equal to the known or estimated variance in the data noise. Many prob-

lems may also benefit from a more careful approach to data fidelity modeling

that assumes correct statistics. For example, it is clear that most radiography

applications are governed by Poisson statistics. Such treatments are outside
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the scope of this paper.

Our approach is to use the largest invertible discrete linear projection op-

erator P and regularize the inversion. Given a data vector or length m, we

reconstruct the object at the same resolution. Thus, P is an m × m matrix.

The methods outlined in the following sections are not limited to this invert-

ibility condition.

2.1 Inversion without regularization

The unregularized inversion is the p = 0 case of Equation (4), as the second

term of the right hand side does not depend on ρ. This lack of regularization

is appropriate for situations in which no prior object knowledge is available.

The object density reconstruction is given explicitly by the pseudo-inverse ρ =

(P T P )−1P T d. It is expected to produce poor results in real scenarios due

to the combination of noisy data and the ill-conditioning. In particular, we

expect noise in the most stable directions of P (the most unstable of P−1) to

be amplified significantly and lead to poor inversions.

2.2 H1 regularization

The p = 2 case of Equation (4) is the H1-regularization minimization. It can be

shown to be equivalent to applying the diffusion operator on the unregularized

solution. The equivalent diffusion time is inversely related to α. The result is a

smooth reconstruction clearly biased against discontinuities in ρ. The same is

true for all p > 1 solutions. The object density reconstruction is given explicitly

by

ρ =
(
P T P − 4παrD2 − 4παD

)−1
P T d. (5)
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For the gradient operator matrix, D, we use a simple forward differenc-

ing with Neumann boundary conditions. If the inverse is nearly singular it is

advantageous to use the solution methods outlined in the next subsection.

2.3 TV regularization

The p = 1 case of Equation (4) is the TV regularization minimization. This

regularization is not biased against density discontinuities; it penalizes such

density edges by a reduction in amplitude, but not at the expense of smoothing

the edge. Following Vogel [4], we use the lagged-diffusivity fixed point method

to find the minimum of F (ρ). We compute the gradient and an approximate

Hessian of the discrete cost functional F that define a quasi-Newton step to-

wards the minimum. Taking the Gateaux derivatives of equation (4), we obtain

F ′ (ρ) = P T (Pρ− d) + αL (ρ) ρ, (6)

and

F ′′ (ρ) = P T P + αL (ρ) + αL′ (ρ) ρ, (7)

where we adopt the notation R′ (ρ) = L (ρ) ρ. In particular, if p = 2 then

L (ρ) = 2π
(
rD2 + D

)
. If p = 1, the non-differentiability of R when Dρ = 0 is

problematic. The difficulty is overcome by choosing a suitably small parameter

β and defining R by

R (ρ) = 2π

∫ ∞

0
rdr
√
|Dρ|2 + β2. (8)

Now R has a well-defined derivative from which L (ρ) is identified:
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L (ρ) = 2π

[
(rD + I) ◦

(
D√

|Dρ|2 + β2

)]
. (9)

Since L (ρ) depends explicitly on the solution ρ, we let the solution iterate ρν+1

depend on the previous solution ρν . This is the origin of the term lagged-

diffusivity. The quasi-Newton iteration is given by

ρν+1 = ρν + sν

= ρν − [Hess F (ρ)]−1 DF (ρν)

≈ ρν −
[
P T P + αL (ρν)

]−1 [
P T (Pρν − d) + αL (ρν) ρν

]
.

(10)

where in the correction term sν we use the approximate Hessian which omits the

L′ (ρ) ρ term. While Newton methods are expected to have quadratic conver-

gence, the use of a lagged-diffusivity and approximate Hessian guarantee only

linear convergence [2]. Methods with faster convergence (for example, primal

dual) require larger computational overhead. For the small problems of interest

here (n < 103), linear convergence is sufficient. Typically ∼ 20 iterations are

sufficient to reach our convergence criterion ‖sν‖2/‖ρν‖2 < 10−3.

The discretization of Equation (10) is straightforward. First, we define the

diffusivity function

φ =
1√

|Dρ|2 + β2
, (11)

so that

L (ρ) = φD + rD · φD. (12)

We then use simple forward differencing to construct the discrete gradient oper-

ator. The use of second order methods can present difficulties when attempting

to recover discontinuities. See [1] for a detailed discussion of the functional F
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when p = 1.

2.4 Adaptive TV regularization

Since most static objects have only piecewise continuous densities, we would

like to use a regularization with the edge-preserving quality of TV and absolute

amplitude smoothing quality of H1. To this end, we present a fourth regular-

ization method which we designate as adaptive total variation (aTV). In this

approach, TV regularized solutions are used to identify object radial locations

of suspected density discontinuities. Then, an H1 regularized inversion on the

data set apart from these locations completes the analysis.

To accomplish this we mask the discrete gradient operator according to an

edge location set that identifies suspected object discontinuities. This edge

location set E is represented by a diagonal matrix of diagonal entry 0 if the

object has a suspected density discontinuity at the location and entry 1 other-

wise. The masked gradient operator is then D∗ = D · E. The aTV solution is

found by the following algorithm:

1. Determine αTV, the regularization parameter that provides the desired

TV reconstruction, and ∆ρ = ρmax − ρmin, the density range of the TV

reconstruction.

2. Set E equal to the identity matrix so that D∗ = D · E = D.

3. Set the discontinuity threshold t = ∆ρ

4. Set α > αTV

5. Compute the TV regularized solution ρ using α and D∗.

6. Compute the masked gradient operator matrix D∗. First set E = I, then

set Ei,i = 0 if ρi+1 − ρi > t. Now D∗ = D · E.

7. Update t.
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8. Repeat steps 5 through 7 until convergence criteria are met on either the

solution ρ or on the threshold t.

9. Compute the H1 regularized solution ρ using a very large α and the final

masked gradient operator matrix D∗.

The choice of t within the inner iteration is somewhat of an art, though

certain principles apply. The threshold t is initially large relative to expected

density discontinuities and lowered at each iteration down to a value somewhat

larger than the estimated or known noise level η in the reconstruction ρ. The

regularization parameter α is set large relative to αTV . The large initial pa-

rameter values allow only the largest density discontinuities to be recognized

at early iterations. Incremental adjustments combined with a masked gradient

operator allow discontinuities on smaller and smaller size scales to be identified.

The examples in the following section use the following parameters.

α = 2αTV, (13)

and

tk = 2[η + 2−k(∆ρ− 2η)], k = 1, 2, ..., 10, (14)

where k is the aTV iteration index.

3 Examples and Discussion

We show results of the four regularized inversion methods applied to both

synthetic and real data. In all cases we work with objects of one-dimensional

description ρ(r) and corresponding one-dimensional data d(x).
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3.1 Synthetic Example 1

The first example is the reconstruction of an object of ten nested varying den-

sity rings. The object, data, and reconstructions are shown in Figure 1. The

object density profile (a) is given by n = 200 ring densities. The corresponding

projection data (b) is a synthetically generated areal density with added Gaus-

sian noise. The variance of the noise is a uniform 1.5 percent of the maximum

noiseless data value. The noisy data is shown in blue and the noiseless data

is shown in black. In each of the remaining subfigures, the actual object is

shown in black and a reconstruction is shown in red: (c) unregularized; (d) H1;

(e) TV; and (f) aTV. As expected, the unregularized reconstruction is over-

whelmed by noise amplification through the ill-conditioned inverse projection

[4]. A smoothing regularizer does very well at reducing high frequency noise

artifacts and even preserves the general character of the object, but the same

regularizer is unable to capture density discontinuities, smoothing the edges.

The TV regularizer captures many of the discontinuities. The aTV regulariza-

tion procedure does the best of all. It best identifies all discontinuities and best

preserves the actual density levels to within that given by the local data. Fig-

ure 2 shows the results of several stages in the iterative aTV process along the

path from Figure 1(e) to Figure 1(f). Figure 2(a) shows the original TV regu-

larized reconstruction, and is identical to Figure 1(e). Subfigures (b) through

(g) show intermediate reconstructions along with the current catalog of edge

locations (blue dashed lines). At each iteration, as the edge location detection

threshold is lowered, the edge location set and gradient operator matrix are

updated. Only the first six aTV iteration results are shown as the remaining

computations do not affect the edge location set in this example. Subfigure (h)

shows the results of the final H1 regularized solution; it is the result shown in

Figure 1(f).
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3.2 Synthetic Example 2

The second example is the reconstruction of an object with a mixture of piece-

wise smooth and piecewise constant density variations. The object, data, and

reconstructions are shown in Figure 3. The object is of similar description to

the previous object. This object is more complex in that it has some regions of

smoothly varying density and density discontinuities are not regularly spaced.

The data is synthetic with added Gaussian noise of variance 1.0 percent of the

maximum noiseless data value. The reconstructions are ordered as in the pre-

vious example. We note that the TV-based regularizers again perform better.

Even the smallest object features are partially recovered. This suggests that

our regularizer and data fidelity metric are excellent choices. Figure 3(e) does

show staircasing, in which regions of nonzero slope are recovered as a series of

piecewise constant values over multiple pixels.

3.3 Simulated Example 1

The third examples is an edge-detection exercise from a simulated X-ray ra-

diograph of a set of nested spherical shells. Figure 4 shows the radiograph

(a), computed radial areal density (b), and reconstructions (c) and (d). Radio-

graphs were numerically simulated using the Monte Carlo code MCNP1 with

X-ray scattering suppressed. The simulated source is a bi-chromatic cobalt-60

source set at a distance sufficient to adequately approximate a parallel beam.

The object is a set of four nested spheres whose boundary locations are indi-

cated by vertical grid lines in the reconstruction figures. In this case we must

convert the radiograph from intensity (I) to areal density. Without explicit

1MCNP is a particle transport code that includes detailed physics treatments of photoatomic and
photo-electron interactions. It correctly treats Bremsstrahlung photons created from recoil or ejected
electrons as well as photon scattering. It allows high-fidelity simulations of actual experimental
conditions including source particulars and experiment geometry. Our simulated radiographs were
provided by Jeff Favorite of the Applied Physics Division at Los Alamos National Laboratory.
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prior knowledge of the object, the areal density is not uniquely determined.

Instead we use an exponential attenuation approximation (d ∝ ln ( I/I0)) and

invert assuming that the object is a single material. The relative noise level is

very small in this simulation with a standard deviation of approximately 0.01%

of the maximum areal density value. We find that density edges are accurately

reconstructed using a TV prior, but poorly defined using a smoothing regular-

izer. Because of the absence of calibration data we do not attempt to recover

densities.

3.4 Simulated Example 2

The fourth example is nearly identical to that of the previous example. The

data now includes X-ray scattering effects but the reconstruction process is the

same and does nothing to account for the differences. Figure 5 shows (a) a

false-color radiograph, (b) computed radial areal density, (c) H1 regularized

reconstruction, and (d) aTV regularized reconstruction. No attempt was made

to correct for scattering effects. We find that locations of material boundaries

(density discontinuities) are still very well determined. The main effect of

the scattering is to render impossible a quantitative analysis of the individual

densities. In this relatively noiseless scenario, the material boundaries could

be obtained from derivative information on the H1 solution. However, the

previous examples show that this is not generally the case.

3.5 Experimental Example

The fifth example is the reconstruction of a similar spherical computational

test object from an actual X-ray radiograph.2 Figure 6 shows (a) a false-color

2The radiograph was acquired by Hans Snyder and David Miko of the Nuclear Nonproliferation
Division at Los Alamos National Laboratory.
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radiograph, (b) computed radial areal density, (c) H1 regularized reconstruc-

tion, and (d) aTV regularized reconstruction. Locations of the actual spherical

shell boundaries are indicated by vertical gridlines in the reconstructions. We

find that the H1 solution has a very difficult time distinguishing even quali-

tative object geometry. The aTV solution is significantly better, identifying

all material boundaries. It does, however, retain two intermediate boundaries

suggesting a more complex structure than in the real object. We attribute this

effect to a combination of the scattering distortion effects, uncertainty in beam

intensity correction across the image plane, and measurement noise. The effects

of scattering are pronounced in the central region of the reconstructions; the

interior and exterior densities of the actual object are both zero.

4 Conclusion

It is expected that any regularization based on prior knowledge of objects to

be reconstructed will provide suppression of inversion amplified data noise and

visually pleasing results relative to an unregularized solution. The particular

choice of regularization, however, has significant influence on the details of the

final result. We have shown that TV based regularizations are much better

choices for reconstructing objects of piecewise smooth density, especially if the

location of density edges are an important reconstruction feature.

We have presented methods for the applying TV regularization to one-

dimensional Abel inversion problems with regularization in the two-dimensional

object space. Our approach involves the use of a lagged diffusivity fixed point

analysis. We also introduced a simple adaptive gradient operator approach for

identifying density discontinuities and applying zero-cost penalty in the edge

location set of the regularization cost functional.
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Current and future work includes (1) the use of data fidelity that reflects

known data characteristics, (2) extensions to two-dimensional cylindrically-

symmetric object descriptions ρ(r, z), (3) arbitrary orientation of the object

symmetry axis, and (4) arbitrary beam geometry (nonparallel).
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Figure Captions

Figure 1. Regularized inversion examples on a synthetic data set generated

from a simple nested-ring computational test object. The object density is de-

fined at 200 radial positions and consists of 10 individual density values. The

density profile of the object (a) is projected onto one-dimension (b, black) and

Gaussian noise is added to obtain a synthetic 1D radiograph (b, blue). The re-

maining subfigures are four regularized object density reconstruction examples

(red) against the object reference (black): (c) unregularized; (d) H1; (e) TV;

and (f) aTV.

Figure 2. Sample iterative steps during the adaptive TV reconstruction of sim-

ulated object #1. The original TV reconstruction (a) is iteratively modified

through a procedure that identifies density discontinuity locations. Subfig-

ures (b) through (g) show intermediate reconstructions and identified edges are

shown as vertical dashed lines. The final subfigure shows the final reconstruc-

tion where H1 regularization has been applied to all regions not considered to

be edge locations. See the main text for details.

Figure 3. Regularized inversion examples on a synthetic data set generated

from a variable density computational test object. The object density is de-

fined at 200 radial positions. The density profile of the object (a) is projected

onto one-dimension (b, black) and Gaussian noise is added to obtain a synthetic

1D radiograph (b, blue). The remaining subfigures are four regularized object

density reconstruction examples (red) against the object reference (black): (c)

unregularized; (d) H1; (e) TV; and (f) aTV.

Figure 4. Edge detection example from a simulated X-ray experiment. In this
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example the simulation does not account for X-ray scattering. The four sub-

figures are: (a) false color radiograph; (b) computed radial areal density; (c)

H1 regularized inversion; and (d) aTV inversion. Locations of actual object

density discontinuities are shown as vertical gridlines. The horizontal gridline

indicates the zero density level.

Figure 5. Edge detection example from a simulated X-ray experiment. This

example includes the effects of X-ray scattering. The four subfigures are: (a)

false color radiograph; (b) computed radial areal density; (c) H1 regularized

inversion; and (d) aTV inversion. Locations of actual object density discon-

tinuities are shown as vertical gridlines. The horizontal gridline indicates the

zero density level.

Figure 6. Edge detection example on a spherical nondestructive testing exam-

ple object examined by an actual X-ray experiment. The four subfigures are:

(a) false color radiograph; (b) computed radial areal density; (c) H1 regularized

inversion; and (d) aTV inversion. Locations of actual object density discon-

tinuities are shown as vertical gridlines. The horizontal gridline indicates the

zero density level.
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